Optical absorption modeling of thermal infrared detectors by use of the finite-difference time-domain method.
نویسندگان
چکیده
The optical absorption of thin-film thermal infrared detectors was calculated as a function of wavelength, pixel size, and area fill factor by use of the finite-difference time-domain (FDTD) method. The results indicate that smaller pixels absorb a significantly higher percentage of incident energy than larger pixels with the same fill factor. A polynomial approximation to the FDTD results was derived for use in system models.
منابع مشابه
Finite-Difference Time-Domain Simulation of Light Propagation in 2D Periodic and Quasi-Periodic Photonic Structures
Ultra-short pulse is a promising technology for achieving ultra-high data rate transmission which is required to follow the increased demand of data transport over an optical communication system. Therefore, the propagation of such type of pulses and the effects that it may suffer during its transmission through an optical waveguide has received a great deal of attention in the recent years. We...
متن کاملQuantitative Comparison of Analytical solution and Finite Element Method for investigation of Near-Infrared Light Propagation in Brain Tissue Model
Introduction: Functional Near-Infrared Spectroscopy (fNIRS) is an imaging method in which light source and detector are installed on the head; consequently, re-emission of light from human skin contains information about cerebral hemodynamic alteration. The spatial probability distribution profile of photons penetrating tissue at a source spot, scattering into the tissue, and being released at ...
متن کاملThe Study of Biological Effect of EM Radiation by Antenna at Different Position of Human Model
This paper presents an approach to modeling of field penetration and gives contribution to understanding the real effects of the fields and the sensitivity of human model to electromagnetic radiation generated by mobile antenna. When a human body is exposed to the electromagnetic radiation, because human body contain 70% of liquid, and it contain more liquid near of head, heart, abdomen (near o...
متن کاملThe Study of Biological Effect of EM Radiation by Antenna at Different Position of Human Model
This paper presents an approach to modeling of field penetration and gives contribution to understanding the real effects of the fields and the sensitivity of human model to electromagnetic radiation generated by mobile antenna. When a human body is exposed to the electromagnetic radiation, because human body contain 70% of liquid, and it contain more liquid near of head, heart, abdomen (near o...
متن کاملThe Study of Biological Effect of EM Radiation by Antenna at Different Position of Human Model
This paper presents an approach to modeling of field penetration and gives contribution to understanding the real effects of the fields and the sensitivity of human model to electromagnetic radiation generated by mobile antenna. When a human body is exposed to the electromagnetic radiation, because human body contain 70% of liquid, and it contain more liquid near of head, heart, abdomen (near o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Optics letters
دوره 26 5 شماره
صفحات -
تاریخ انتشار 2001